Mark schemes

Q1.

(a) M1 $CH_3CH(OH)CH_3 + CH_3COOH \rightleftharpoons CH_3COOCH(CH_3)_2 + H_2O$

M2 Methyl ethyl ethanoate.

Allow ECF from incorrect 5 carbon ester

Allow other valid names 1-methylethyl ethanoate Isopropyl ethanoate 2-propyl ethanoate Propan-2-yl ethanoate

2

(b)

This question is marked using Levels of Response. Refer to the Mark Scheme Instructions for Examiners for guidance.	
Level 3	All stages are virtually complete (virtually complete means one from stage 1 and two from stages 2 and 3).
5-6 marks	Answer communicates the whole explanation, including equations, coherently and shows a logical progression through all three stages.
Level 2	All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies (covered means one from a stage)
3-4 marks	OR two stages virtually complete (virtually complete means one from stage 1 or two from stages 2 and 3).
	Answer is coherent and shows some progression through all three stages. Some steps in each stage may be incomplete.
Level 1	Two stages are covered (covered means one from a stage) but the explanation of each stage may be incomplete or may contain inaccuracies
1-2 marks	OR only one stage is virtually complete (virtually complete means one from stage 1 or two from stages 2 and 3).
	Answer shows some progression between two stages.
0 mark	Insufficient correct chemistry to gain a mark.

Indicative Chemistry Content

Stage 1

1a Measuring cylinder(s) for the propan-2-ol and ethanoic acid (size not required but if specified should be between 10 - 100 cm³) Allow 10cm³ / graduated pipette or burette

1b (Dropping/teat) pipette for sulfuric acid (NOT graduated or other qualification for pipette)

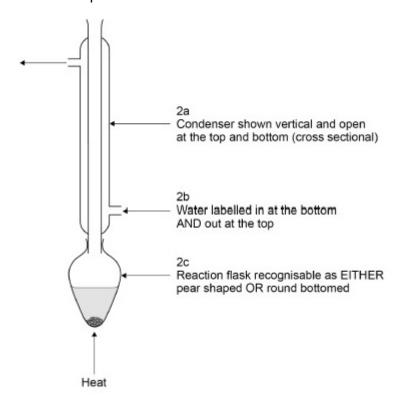
Stage 2 Diagram e.g. below to include

2a Labelled <u>condenser</u> shown vertical and open at top and bottom i.e. in cross section

2b Labelled <u>water in</u> at the bottom and <u>water out</u> at the top of the vertical condenser

2c Labelled reaction <u>flask</u> recognisable as either pear shaped or round bottomed

Stage 3 Safety


Needs precaution AND reason for each suggestion

3a Use a fume cupboard/fume hood/well-ventilated lab space AND to avoid breathing in harmful/toxic/corrosive compounds

3b Wear gloves
AND as compounds are corrosive

3c Add glass beads/chips (to the mixture before heating)/labelled as anti-bumping granules/chips
AND to ensure smooth boiling/reduce size of bubbles

3d Use an electric heater/water bath AND as compounds are flammable

(c) M1 To neutralise/remove/react with (exces

M2 Remove stopper/bung OR tip the funnel upside down and open the tap

M3 There will be a build up of pressure/gas/carbon dioxide

M3 must be linked to their precaution in M2

OR

M2 Allow add stopper

M3 To prevent spillage

(d) Drying agent/To remove water

Not dehydrating agent

(e) Compare boiling point to a data book/known value

Boils at sharp boiling point/over a narrow temp
range

[13]

3

Q2.

(a) M1 Skeletal formula of organic product

M2 Rest of equation

M1 Need H on alcohol OH

M1 Allow O-H for alcohol OH

M2 for correct formulae for

2-hydroxybenzenecarboxylic acid and methanol on left and H_2O on right

M2 Allow C7H6O3/HOC6H4COOH and CH4O

Ignore additional non-skeletal structures for ester (assume it is working out)

Allow Kekulé structures for rings

(b) Ethanoic anhydride/It is less/not corrosive

ΟR

Ethanoic anhydride/It does not form strong acid/HCl /(only) forms weak/ethanoic/carboxylic acid

OR

Ethanoic anhydride/It is less/not vulnerable to hydrolysis

Allow reverse argument for ethanoyl chloride e.g. ethanoyl chloride is (more) corrosive

Ignore cost/less volatile/products are less harmful/safer/toxic/produces toxic fumes

Ignore references to less/more exothermic/violent/vigorous

(c) (Nucleophilic) addition-elimination

Ignore esterification/acylation

(d) Catalyst

Ignore proton donor/heterogeneous/homogeneous Allow speeds up reaction/lowers activation energy 1

2

(e) Boiling points are above 85 °C

Allow product(s) or reactant(s) or named product(s) or reactant(s) boiling points are above 85 °C

Allow none of them would boil/mixture would not boil/do not need to boil the mixture

Allow no volatile reagent(s)/product(s)/reactant(s)

Ignore reference to mixture/substances not evaporating/vaporising

Filter paper

Vacuum pump

M1

- Cross sectional (i.e. funnel top and bottom shown open)
- Bung or collar drawn (with funnel spout visible through)
- (Buchner/Hirsch) Funnel approximate shape
- Horizontal filter paper allow solid or dashed line

M2

Labels must include filter paper and indication of vacuum/water pump/reduced pressure/suction

(g) Any 2 of:

- Ethanoic acid
- Phosphoric acid
- 2-hydroxybenzenecarboxylic acid
- Ethanoic anhydride
- Water

Ignore catalyst/unreacted reactants
Allow names or correct formulae
Allow salicylic acid/2-hydroxybenzoic acid

1

2

(h) M1 Dissolve crude product in hot solvent (water and ethanol) Ignore initial filtration M1 not wrong solvent if named

M2 of minimum volume

> M2 Allow reference to saturated solution as alternative to minimum volume

M3 Filter (hot to remove insoluble impurities)

M3 Ignore method of filtration

Allow decant

М4 Cool (to recrystallise)

M5 Filter under reduced pressure / with Buchner/Hirsch apparatus

M6 Wash (with cold solvent) and dry

M6 Allow water and/or ethanol

Apply list principle for each additional process (e.g. drying agent added, base to neutralise acid added, distillation, solvent extraction) in an incorrect method

Ignore reference to melting point determination

6

(i) **M1** Melting point

M1 Ignore boiling point

M2 Lower (than data book value)

> M2/3 In either order M2 Ignore 'different' M2 ECF for 'higher' if b.pt in M1 M2If b.pt in M1 NOT 'lower'

Melts over a (wide) range of temperature (rather than sharp/narrow **M3** range if pure)

M3 ECF from b.pt

Q3.

(a) M1 3 CH₃(CH₂)₁₄COOH

M2 CH₂(OH)CH(OH)CH₂OH

Penalise additional product(s) once

(b) M1 $M_r = 256$

M2 n(CH₃(CH₂)₁₄COOH) =
$$\frac{0.387}{M1}$$
 = 1.51 × 10⁻³

M3 Q =
$$150 \times 4.18 \times 13.6 = 8527.2$$
 (J)

M4
$$\Delta H = \frac{M3}{M2} \div 1000 = (-)5641$$

M5 $\Delta H = -5640 \text{ kJ mol}^{-1}$

Must be negative and 3sf (allow ecf on M4)

5

2

2

(c) M1 Less exothermic

Allow Less negative (value) / Lower

M2 Incomplete combustion

Allow products of incomplete combustion

(d) S С Η 0 M1 =37.08 5.15 24.72 33.05 M2 ÷ A r = 3.09= 5.15= 1.55= 1.030÷ smallest = 3 = 5 = 1.50 = 1

M3 Empirical formula = $C_6H_{10}O_3S_2$

$$M1 \% S = 33.05$$

M2 Calculation of moles

M3 Ratio of moles AND Empirical Formula

If no Sulfur used ecf for M2 and M3

M2 3.09 : 5.15 : 1.55

M3 C₆H₁₀O₃

3

(e) M1 Acid rain

Allow smog

M2 SO₂

Allow NO_x

(f) M1 Bonds broken = 9459 kJ mol⁻¹

M2 Bonds formed = 9682 kJ mol⁻¹

M3
$$\Delta H$$
 = M1 - M2 = -223 kJ mol⁻¹

M3 can be awarded as ecf from their M1 and M2

(g) M1
$$\Delta H = -235 - (2 \times -394) - (3 \times -242)$$

$$M2 = +1279 \text{ kJ mol}^{-1}$$

If no sign assume positive

² [19]

Q4.

(a) catalyst

ALLOW reduces E_a
IGNORE speeds up reaction
IGNORE provides alternative path
IGNORE proton donor
IGNORE dehydrating agent

(b) electric heater/heat mantle or (hot) water bath

IGNORE not with a Bunsen/naked flame / gently

ALLOW hot water

ALLOW heating/hot plate/ sand bath / oil bath

ALLOW reference to flame/Bunsen if in context of heating a water bath

NOT any indication of direct heat from Bunsen

(c) **M1** there is a bung/stopper (in the end of the condenser)

M2 idea of pressure build up

owtte

M2 stopper could be forced out **IGNORE** glass shatters / explodes

M3 water goes the wrong way through the condenser

M4 water does not fill the condenser / condenser is not cool enough water in at top / out at bottom

IGNORE condenser is wrong way round

ALLOW less condensing /

vapour/gas/reactants/products will not condense / not as effective at cooling/condensing vapour/reactants/products escapes

IGNORE uneven cooling

NOT mixture in flask not cooled

ALLOW M1/M3 neck of flask not sealed owtte

M2/M4 vapour/reactants/products can escape

IGNORE references to clamps

(d) M1 to neutralise/react with/remove the acid

ALLOW carboxylic/ethanoic and/or sulfuric

IGNORE react with/neutralise the distillate/mixture

IGNORE to act as a base

NOT if incorrect acid named

M2 carbon dioxide / gas is produced

ALLOW effervescence / bubbles / fizzes

IGNORE water vapour produced

NOT if incorrect gas named

IGNORE pressure build up (as in Q)

(e) M1 ethyl ethanoate/it is immiscible with / insoluble in water

ALLOW water/solution and ethyl ethanoate/it do not mix,

OR aqueous and organic layers do not mix

ALLOW ethyl ethanoate/it is hydrophobic

IGNORE references to polarity / intermolecular

forces

M2 ethyl ethanoate/it is less dense / has lower density (than water)

IGNORE different/low density

NOT lighter

ALLOW answers for either mark from either part

(f) to remove/absorb water / as a drying agent

ALLOW reacts with water

ALLOW to dry the product/it

IGNORE dehydrates

NOT reference to crystals forming

NOT to dry the reactants

NOT to remove soluble impurities

2

2

(g) **M1** mass of ethanol = $10 \times 0.790 = 7.$

M2 amount of ethanol = 46.0 (= 0.172 mol) **AND**

amount of ethanoic acid = $\frac{1}{60.0}$ (= 0.0875 mol)

M3 (limiting reagent is) ethanoic acid

M4 (max amount of ethyl ethanoate = 0.0875 mol)

max mass of ethyl ethanoate = 88.0×0.0875 (= 7.70 g)

M5 % yield = $M4 \times 100 = 71.0\%$ (70.6 to 71.1 to min 2sf)

Allow ECF at each stage

M1 scores from 0.172 mol of ethanol

M2 need to see numbers or sums for both substances

M2 10/46 can only be ECF if 10 is identified as a mass

M3 ECF from **M2** if both amounts clearly shown and nethanoic acid

aria rietilanoi si etilanoic acid

M4 independent of M3

Alternative M4 & 5

M4 Amount of ethyl ethanoate formed

$$=\frac{5.47}{88.0}$$
 (=0.0622)

M5% yield = 0.0875 x 100 = 71.0%

Correct answer scores M4 and M5 but mark M1/2/3 separately

M5 must show an attempt at mass or moles of ester formed divided by mass or moles of ester expected

(h) reaction is an equilibrium/reversible

ALLOW losses during

distillation/isolation/purification/transfer / incomplete distillation / side reactions / byproducts

ALLOW incomplete reaction

ALLOW impurities/contamination/water present / not dry

IGNORE water is also produced (during the reaction)

Q5.

M1: Arrow from C=O bond to O

M2: Arrow from correct C-O bond to O

M3: Arrow from O-H bond to O

(b) (Alkaline/base) hydrolysis

(c) Base

Allow proton acceptor Ignore ref to Bronsted Lowry

(d) Soap only

[6]

3

1

1